

Flexpro^{**}- The versatile gasket with three key features: compressibility, low stress, convenience.

FLEXITALLIC

THE FLEXITALLIC GROUP IS THE INTERNATIONAL MARKET LEADER IN THE MANUFACTURE AND SUPPLY OF HIGH QUALITY, HIGH VALUE INDUSTRIAL STATIC SEALING PRODUCTS.

ABOUT US

As the developer of the spiral wound gasket in 1912, we have built on this legacy of innovation with revolutionary products including Thermiculite®, Sigma®, Change™ Gasket and more recently Corriculite®, our tightest sealing material, which is set to transform the global sealing industry.

We have a global network of Allied Distributors across 30 countries. This ensures local demand is met quickly, providing a combination of the highest product quality and outstanding customer service.

Our extensive and varied product offering includes spiral wound gaskets, RTJ gaskets, Flexpro™
Kammprofiles, sheet materials, dynamic and static packings, pipe support and custom rubber products.
Drawing upon the group's rich history and present day values of leadership, quality, service and technology, we are at the forefront of developing sealing solutions for industries around the world.

In addition to a wide range of products, we also deliver world-class technical support and Joint Integrity training.

OUR MISSION

MAKING THE WORLD SAFER
AND CLEANER THROUGH
ENGINEERED SEALING SOLUTIONS.

BASED ON SALES AND GEOGRAPHIC REACH, THE FLEXITALLIC GROUP HAS BECOME THE GLOBAL SUPPLIER OF INDUSTRIAL GASKETS.

INNOVATIVE PRODUCT RANGE

We have a rich history of innovation, which has seen us lead the industry with many new products.

Over the years, our products have gained a reputation for quality, reliability and technology that is second to none.

CUSTOMISED ENGINEERING SOLUTIONS

Our Application Engineering, Production Engineering and R&D teams work closely together to design, develop and manufacture bespoke sealing solutions. We have been responsible for a number of truly revolutionary products, including Thermiculite®, Sigma® and Corriculite®, which ensures we are able to continually meet the ever more stringent requirements of our customers.

FLEXITALLIC® SAFE

Over the last century, our aggressive R&D efforts have helped customers become Flexitallic® Safe. From the first Spiral Wound Gasket in 1912 to the ever evolving applications for Thermiculite®, our goal is to develop materials that push the parameters of heat, pressure and chemical resistance.

OUR COMMITMENT TO QUALITY

We place great emphasis on maintaining international quality standards, and are approved to ISO 9001: 2015, ISO 14001:2015, ISO 45001: 2018, API 6A and API 17D, to ensure we meet the highest possible standards for all our products and services. We also invest heavily in test and quality assurance equipment to maintain our reputation for the highest quality products.

Our materials are subjected to a wide range of tests as specified by statutory regulations and customer requirements. These approvals enable our customers to make informed choices as to the suitability of a product for each and every application.

INSIDE INDUSTRY

We pride ourselves on not simply supplying products, but by supporting customers with a detailed knowledge of their industry and applications, so that products and services are tailored to their specific needs. This unique approach means that we focus on providing more than just a product, but also a complete solution that adds genuine value to our clients.

GLOBAL DISTRIBUTION... LOCAL SUPPORT

Our products are distributed through a global network of Allied Distributors. These carefully selected distribution partners are strategically located within their territory to deliver the best possible service and products to our customers. This approach means our products and know-how are available to the global industries we service.

FLEXPRO™ - THE VERSATILE GASKET WITH THREE KEY FEATURES: COMPRESSIBILITY, LOW STRESS, CONVENIENCE.

The FLEXPRO™ gasket has been providing an extremely tight, reliable seal in a wide range of applications globally since its development in Germany over 50 years ago.

The FLEXPRO[™] gasket is comprised of a concentrically serrated solid metal core with a soft, conformable sealing material bonded to each face. The soft facing material provides low stress gasket seating, while the serrated geometry of the metal core enhances sealing performance by inducing stress concentrations on the sealing surfaces. The serrations minimise lateral movement of the facing material, while the metal core provides rigidity and blowout resistance.

The FLEXPRO™ gasket exhibits excellent compressibility and recovery characteristics, maintaining joint tightness under pressure and temperature fluctuations, temperature differential across the flange face, flange rotation, bolt stress relaxation, and creep. Suitable for vacuum to extremely high pressure applications.

COMPOSITE CONSTRUCTION WITH SERRATED CORE Soft conformable facing Serrated surface machined on solid metal core Optional outer ring for centering; can be integral or floating

STYLE PN

Style PN FLEXPRO[™] gaskets are selected for use in confined locations, including male and female, tongue and groove, spigotted and/or recessed flange arrangements.

STYLE ZG

Variation of the PN FLEXPRO™, utilises an integral outer locating ring for correct gasket positioning within the flange assembly bolt circle. Style ZG **FLEXPRO™** gaskets are recommended for use in standard raised face and flat face flange assemblies.

STYLE ZA

The Style ZA FLEXPRO™ is a slight variation of the Style ZG. The integral outer locating ring is replaced by a loose fitting independent ring which is preferred in applications where differential radial thermal expansion may be encountered.

IDEAL FOR SHELL AND TUBE STYLE HEAT EXCHANGER FLANGES.

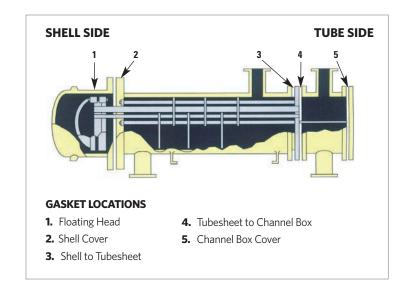
Although suitable for use on all standard pipeline flanges in a wide range of difficult applications, the FLEXPRO™ gasket is proving to be reliable, as a cost effective alternative to metal jacketed gaskets, that are commonly used in heat exchanger applications.

Use of the Flexitallic FLEXPRO[™] gasket will ensure a reliable seal, from initial hydrotest through difficult operating conditions.

FLEXPRO[™] gaskets are suitable for use on TEMA flanges, and when required, pass partition ribs can be supplied in any configuration.

The FLEXPRO™ gasket provides a high integrity, low seating stress seal, and is ideal for heat exchanger applications with limited bolt load or less rigid flanges.

STANDARD CORE MATERIALS


Standard core thickness is 3.0mm; other thicknesses and materials are readily available to suit specific applications.

STANDARD FACING MATERIALS

Standard facing thickness is 0.5mm or 0.75mm (material dependent); other thicknesses and materials are readily available to suit specific applications.

FLANGE SURFACE FINISH REQUIREMENTS

The ideal flange surface finish for use with Flexitallic FLEXPRO™ gaskets is 3.2 - 6.4 - metre Ra (125 - 250 - inch Ra).

CORE MATERIAL	MAX. TEMPERATURE					
Stainless Steel	535 - 870°C					
Carbon Steel	535℃					
Aluminium	425°C					
Monel®	815°C					
Nickel	650°C					
Inconel®	1100°C					
Titanium Gr.2	1095°C					
Duplex 2205* (UNS S31803)	300°C					

^{*}Duplex is subject to embrittlement between 350°C and 500°C

FACING	MAX.	SEATING STRESS	SS AT ROOM TEMP				
MATERIAL	TEMPERATURE	MIN. PSI (MPa)	MAX. PSI (MPa)				
Thermiculite [®]	1000°C	2500 (17)	72500 (500)*				
Flexicarb® Flexible Graphite	450°C	2500 (17)	72500 (500)*				
Sigma®	260°C	2500 (17)	72500 (500)*				
Virgin PTFE	260°C	2500 (17)	72500 (500)*				
Soft Metals	Per material	Per material	Per material				

^{*}While high stresses have been utilised, Flexitallic Engineering should be contacted for operating stresses above 40,000 psi.

INDEPENDENT PVRC TESTING CONFIRMS SUPERIOR TIGHTNESS, ROOM TEMPERATURE TIGHTNESS (ROTT), BEHAVIOUR CHARACTERISATION.

ROTT TEST PROCEDURE

The ROTT test includes a gasket load sequence (5 stress levels, S1 to S5), called Part A, which represents the initial joint tightening and gasket seating. The maximum stress level (S5) is 15160 psi for semimetallic gaskets. Part A is interrupted at its three highest stress levels to run unload-reload sequences, called Parts B1, B2, B3 which simulate joint relaxation and re-tightening. At each stress level, helium leakage is measured (for two pressures in Part A and one pressure in Part B).

ROTT test data are plotted in the form of Gasket Stress, Sg, vs. Tightness Parameter, Tp, on a log-log scale. The tightness parameter, Tp, is a measure of the ability of an installed gasket to control its leakage performance in a pressurised flange joint. Tp is proportional to the pressure causing a small leak and inversely proportional to the square of the leak. Higher the Tp value, the tighter the joint. A joint that is 10 times tighter than another leaks 100 times less (at the same pressure).

GASKETS CONSTANTS

The calculated gasket constants are reported in the table below, along with computed values of S100, S1000 and the maximum Tp value obtained in the ROTT tests.

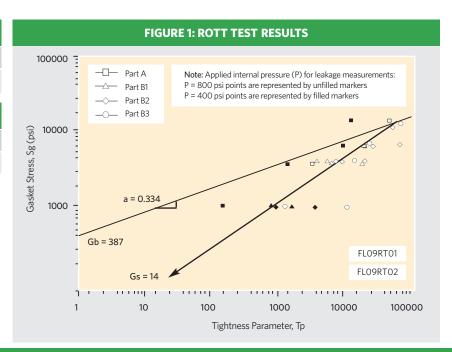
	TABLE 1: PVRC CONSTANTS									
Gb	а	Gs	5100	s1000	Tp MAX					
387 psi	0.334	14 psi	1802 psi	3888 psi	55000					

TABLE 2: ASME CONSTANTS							
m	у						
2	2500 psi						

The ROTT behavior characterisation of a gasket consists of:

- Performing a minimum of two ROTT tests on NPS 4" samples
- Treating and reporting ROTT data on the basis of the Tightness Parameter concept
- Calculating the PVRC Gasket constants, Gb, "a" and Gs, according to the proposed ASTM Standard
- Reporting the gasket constants and characteristics

CONSTANTS Gb, "a", AND Gs

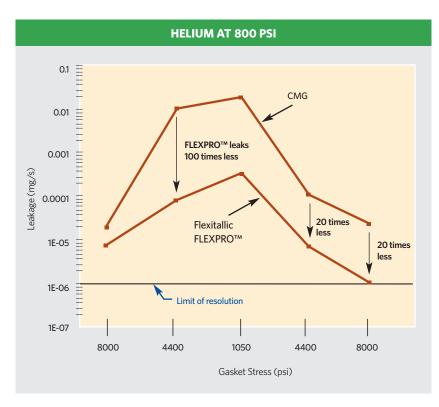

The PVRC tightness based gasket constants are determined from the results of two or more ROTT tests. Constants Gb and "a" together define an initial seating performance line. The combined effect of Gb, and "a" is best represented by the value of STp = Tp x Gb x "a" calculated for typical values of Tp such as 100 or 1000. For example S100 = Gb (100)a. Constant Gs independently represents operation. Low values of Gb, "a", Gs, S100 and S1000 are favourable.

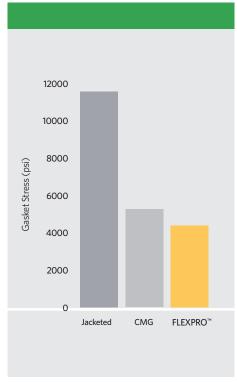
PERFORMANCE IN ROTT TESTS

The results of two ROTT tests conducted at TTRL¹ on Flexitallic FLEXPRO™ gaskets are shown in Figure 1.

At the highest Part A stress level (S5 - 15160 psi), Tp values above 55000 were obtained. A Tp of 55000 corresponds to a Helium leak rate of approximately 1×10^{-6} mg/s at a test pressure of 800 psi.

Part B test data indicates that this gasket maintains superior tightness during stress cycling.

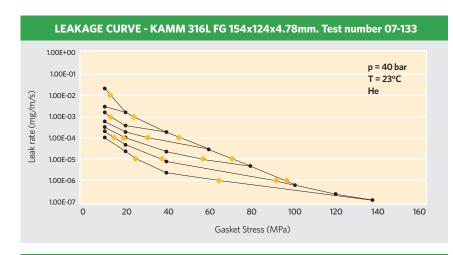

CYCLIC SERVICE COMPARISON


During operation, unloading of a boltedgasketed joint can occur due to pressurisation, fluctuation in pressure and temperature, thermal effects, joint relaxation, etc. PVRC test data confirms the superior ability of the FLEXPRO™ gasket to maintain tightness under these cyclic loading conditions. As shown in the graph, when gasket stress is reduced from 8000 psi to 4400 psi, the FLEXPRO™ gasket leaks 100 times less than a comparable corrugated metal graphite gasket (CMG).

A tighter joint is a safer joint!

T3 TIGHTNESS

The PVRC developed method for characterising gasket performance specifies three classes of tightness. T1 (economy), T2 (standard), and T3 (tight). A tightness class of T3 represents a mass leak rate of helium per unit diameter, of 0.00002 mg/sec-mm. This graph shows that the Flexitallic FLEXPRO™ gasket achieves a tightness class of T3 at the lowest seating stress when compared to other types of gaskets. Results are based on PVRC test data, using a gasket with dimensions of 20" ID x 20.5" OD, with 20 x 1" diameter bolts and an assembly efficiency of 0.75. The Flexitallic FLEXPRO™ gasket is ideal for use in applications where limited bolt load and/or light weight flanges are used.

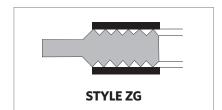


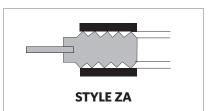
FLANGE CALCULATIONS AND GASKET PARAMETERS - EN 1591-1 AND EN 13555

Driven by national requirements within the European Union for increasing plant efficiency and reducing fugitive emissions the European Standard EN 1591-1 was first published in 2001. The Standard outlines a calculation method in which strength criteria of the individual mechanical components in a bolted joint namely; flanges, bolts and gasket, and importantly leakage criteria are satisfied for a particular application. The calculation method adopts the premise that all gasketed bolted flanged connections leak and requires the user to specify what a permissible level of leakage is for a particular application. This is done via the introduction of the concept of the tightness class. At the time of writing EN 1591-1 is the only stand alone standardised calculation method that includes both stress analysis and tightness proof of a bolted connection.

The calculation requires the input of data specific to the particular application in question. The required gasket characteristics are generated in accordance with the European standard EN 13555. The test protocol outlined in EN 13555 is complex and requires the use of costly sophisticated test equipment.

As the leading supplier of technical solutions in the field of industrial sealing Flexitallic makes use of the latest innovative materials technologies and calculation methodologies to ensure the highest levels of joint integrity. Gasket characteristics in accordance with EN13555 are available for wide selection of Flexitallic static sealing products. Alternatively Flexitallic can undertake flange calculations in accordance with EN1591-1 on behalf of the end user.



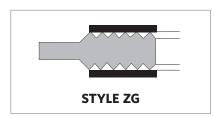

GASKET CHARACTERISTICS ACROSS A RANGE OF TEMPERATURES, STRESSES AND PRESSURES, RELATING TO THE FOLLOWING PROPERTIES ARE GENERATED:

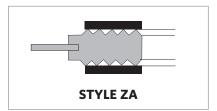
\mathbf{Q}_{Smax}	Maximum surface pressure that can be i	mposed o	on a gaske	t before failure oc	curs			
$\mathbf{Q}_{\min(L)}$	Minimum gasket surface pressure required for leakage class (L) on initial loading							
Q _{Smin(L)}	Minimum gasket surface pressure requir	ed for lea	kage class	(L) after off-load	ing			
L _N	Leakage tightness classes: Tightness Class LN: Specific Leakage Rate (mg.s ⁻¹ .m ⁻¹):	L _{1.0} ≤ 1.0	L _{0.1} ≤ 0.1	L _{0.01} ≤ 0.01				
\mathbf{P}_{QR}	Creep relaxation factor. Ratio of the origi	nal and fi	nal surface	pressures				
Δ_{eGc}	Change in gasket thickness due to creep							
\mathbf{E}_{G}	Elastic unloading modulus							
α_{G}	Coefficient of axial thermal expansion							
μ_{G}	Static friction factor between the gasket	and conta	acting flang	ge face.				

FLEXPRO™ KAMMPROFILES

ASME B16.20

NOMIN	AL BORE	SEALING INNER	SEALING OUTER	CENTERING RING OUTER DIAMETER								
INCHES	ММ	DIAMETER	DIAMETER	150 Class	300 Class	400 Class	600 Class	900 Class	1500 Class	2500 Class		
1/2	15	23.1	33.3	47.8	54.1	Note (2)	54.1	Note (3)	63.5	69.9		
3/4	20	28.7	39.6	57.2	66.8	Note (2)	66.8	Note (3)	69.9	76.2		
1	25	36.6	47.5	66.8	73.2	Note (2)	73.2	Note (3)	79.5	85.9		
11/4	32	44.5	60.2	76.2	82.6	Note (2)	82.6	Note (3)	88.9	104.9		
11/2	40	52.3	69.9	85.9	95.3	Note (2)	95.3	Note (3)	98.6	117.6		
2	50	69.9	88.9	104.9	111.3	Note (2)	111.3	Note (3)	143.0	146.1		
21/2	65	82.6	101.6	124.0	130.3	Note (2)	130.3	Note (3)	165.1	168.4		
3	80	98.3	123.7	136.7	149.4	Note (2)	149.4	168.4	174.8	196.9		
4	100	123.7	153.9	174.8	181.1	177.8	193.8	206.5	209.6	235.0		
5	125	150.9	182.6	196.9	215.9	212.9	241.3	247.7	254.0	279.4		
6	150	177.8	212.6	222.3	251.0	247.7	266.7	289.1	282.7	317.5		
8	200	228.6	266.7	279.4	308.1	304.8	320.8	358.9	352.6	387.4		
10	250	282.7	320.8	339.9	362.0	358.9	400.1	435.1	435.1	476.3		
12	300	339.6	377.7	409.7	422.4	419.1	457.2	498.6	520.7	549.4		
14	350	371.6	409.7	450.9	485.9	482.6	492.3	520.7	577.9	Note (4)		
16	400	422.4	466.6	514.4	539.8	536.7	565.2	574.8	641.4	Note (4)		
18	450	479.3	530.1	549.4	596.9	593.9	612.9	638.3	704.9	Note (4)		
20	500	530.1	580.9	606.6	654.1	647.7	682.8	698.5	755.7	Note (4)		
24	600	631.7	682.5	717.6	774.7	768.4	790.7	838.2	901.7	Note (4)		

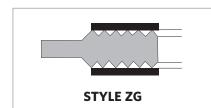

GENERAL NOTES

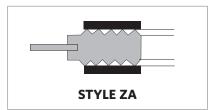

 $Figures\ stated\ are\ for\ information\ only.\ Please\ refer\ to\ the\ current\ version\ of\ the\ original\ standards\ for\ dimensional\ information.$

- 1) Tolerances +/- 0.8mm for all diameters
- 2) There is no Class 400 flanges in NPS through NPS 3" (use Class 600)
- 3) There is no Class 900 flanges in NPS 1/2" through NPS 2.1/2" (use Class 1500)
- 4) There is no Class 2500 flanges in NPS 14" and larger

FLEXPRO™ KAMMPROFILES

Covered Serrated Metal Gaskets for Type A and Type B Flanges. EN1514-6





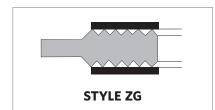
	OUT	D DIAM	TED.		CENTERING RING OUTER DIAMETER									
NOMINAL	SEALING	R DIAMI						CENTERII	NG KING	OUTERD	AMETER			
BORE	INNER DIAMETER		G OUTER DIA											
DN		PN10/40	PN64/160	PN250/400	PN10	PN16	PN25	PN40	PN64	PN100	PN160	PN250	PN320	PN400
10	22	-	See	36	46	46	46	46	56	56	56	67	67	67
15	26	-	PN250	42	51	51	51	51	61	61	61	72	72	-
20	31	-	to	47	61	61	61	61	-	-	-	-	-	-
25	36	-	PN400	52	71	71	71	71	82	82	82	83	92	104
32	46	See	62	66	82	82	82	82	-	-	-	-	-	-
40	53	PN64	69	73	92	92	92	92	103	103	103	109	119	135
50	65	to	81	87	107	107	107	107	113	119	119	124	134	150
65	81	PN160	100	103	127	127	127	127	137	143	143	153	170	192
80	95	-	115	121	142	142	142	142	148	154	154	170	190	207
100	118	-	138	146	162	162	168	168	174	180	180	202	229	256
125	142	-	162	178	192	192	194	194	210	217	217	242	274	301
150	170	-	190	212	217	217	224	224	247	257	257	284	311	348
175	195	-	215	245	247	247	254	265	277	287	284	316	358	402
200	220	240	248	280	272	272	284	290	309	324	324	358	398	442
250	270	290	300	340	327	328	340	352	364	391	388	442	488	-
300	320	340	356	400	377	383	400	417	424	458	458	536	-	-
350	375	395	415	-	437	443	457	474	486	512	-	-	-	-
400	426	450	474	-	489	495	514	546	543	572	-	-	-	-
450	480	506	-	-	539	555	-	571	-	-	-	-	-	-
500	530	560	588	-	594	617	624	628	657	704	-	-	-	-
600	630	664	700	-	695	734	731	747	764	813	-	-	-	-
700	730	770	812	-	810	804	833	852	879	950	-	-	-	-
800	830	876	886	-	917	911	942	974	988	-	-	-	-	-
900	930	982	994	-	1017	1011	1042	1084	1108	-	-	-	-	-
1000	1040	1098	1110	-	1124	1128	1154	1194	1220	-	-	-	-	-
1200	1250	1320	1334	-	1341	1342	1364	1398	1452	-	-	-	-	-
1400	1440	1522	-	-	1548	1542	1578	1618	-	-	-	-	-	-
1600	1650	1742	-	-	1772	1764	1798	1830	-	-	-	-	-	-
1800	1850	1914	-	-	1972	1964	2000	-	-	-	-	-	-	-
2000	2050	2120	-	-	2182	2168	2230	-	-	-	-	-	-	-
2200	2250	2328	-	-	2384	2378	-	-	-	-	-	-	-	-
2400	2460	2512	-	-	2594	-	-	-	-	-	-	-	-	-
2600	2670	2728	-	-	2794	-	-	-	-	-	-	-	-	-
2800	2890	2952	-	-	3014	-	-	-	-	-	-	-	-	-
3000	3100	3166	-	-	3228	-	-	-	-	-	-	-	-	-

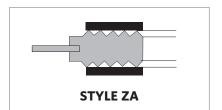
FLEXPRO™ KAMMPROFILES

ASME B16.20 Series A

NOMINA	AL BORE	SEALING INNER DIAMETER	SEALING OUTER DIAMETER	CE	NTERING F	RING OUTE	R DIAMET	ER								
INCHES	мм	150	150	300	300	400	400	600	600	900	900	150	300	400	600	900
26	650	673.1	704.9	685.8	736.6	685.8	736.6	685.8	736.6	685.8	736.6	774.7	835.2	831.9	866.9	882.7
28	700	723.9	755.7	736.6	787.4	736.6	787.4	736.6	787.4	736.6	787.4	831.9	898.7	892.3	914.4	946.2
30	750	774.7	806.5	793.8	844.6	793.8	844.6	793.8	844.6	793.8	844.6	882.7	952.5	946.2	971.6	1009.7
32	800	825.5	860.6	850.9	901.7	850.9	901.7	850.9	901.7	850.9	901.7	939.8	1006.6	1003.3	1022.4	1073.2
34	850	876.3	911.4	901.7	952.5	901.7	952.5	901.7	952.5	901.7	925.5	990.6	1057.4	1054.1	1073.2	1136.7
36	900	927.1	968.5	955.8	1006.6	955.8	1006.6	955.8	1006.6	958.9	1009.7	1047.8	1117.6	1117.6	1130.3	1200.2
38	950	977.9	1019.3	977.9	1016.0	971.6	1022.4	990.6	1041.4	1035.1	1085.9	1111.3	1054.1	1073.2	1104.9	1200.2
40	1000	1028.7	1070.1	1022.4	1070.1	1025.7	1076.5	1047.8	1098.6	1098.6	1149.4	1162.1	1114.6	1127.3	1155.7	1251.0
42	1050	1079.5	1124.0	1073.2	1120.9	1076.5	1127.3	1104.9	1155.7	1149.4	1200.2	1219.2	1165.4	1178.1	1219.2	1301.8
44	1100	1130.3	1178.1	1130.3	1181.1	1130.3	1181.1	1162.1	1212.9	1206.5	1257.3	1276.4	1219.2	1231.9	1270.0	1368.6
46	1150	1181.1	1228.9	1178.1	1228.9	1193.8	1244.6	1212.9	1263.7	1270.0	1320.8	1327.2	1273.3	1289.1	1327.2	1435.1
48	1200	1231.9	1279.7	1235.2	1286.0	1244.6	1295.4	1270.0	1320.8	1320.8	1371.6	1384.3	1324.1	1346.2	1390.7	1485.9
50	1250	1282.7	1333.5	1295.4	1346.2	1295.4	1346.2	1320.8	1371.6	Note (4)	Note (4)	1435.1	1378.0	1403.4	1447.8	Note (4)
52	1300	1333.5	1384.3	1346.2	1397.0	1346.2	1397.0	1371.6	1422.4	Note (4)	Note (4)	1492.3	1428.8	1454.2	1498.6	Note (4)
54	1350	1384.3	1435.1	1403.4	1454.2	1403.4	1454.2	1428.8	1479.6	Note (4)	Note (4)	1549.4	1492.3	1517.7	1555.8	Note (4)
56	1400	1435.1	1485.9	1454.2	1505.0	1454.2	1505.0	1479.6	1530.4	Note (4)	Note (4)	1606.6	1543.1	1568.5	1612.9	Note (4)
58	1450	1485.9	1536.7	1511.3	1562.1	1505.0	1555.8	1536.7	1587.5	Note (4)	Note (4)	1663.7	1593.9	1619.3	1663.7	Note (4)
60	1500	1536.7	1587.5	1562.1	1612.9	1568.5	1619.3	1593.9	1644.7	Note (4)	Note (4)	1714.5	1644.7	1682.8	1733.6	Note (4)

GENERAL NOTES


Dimensions in mm. Tolerances in mm.


 $Figures\ stated\ are\ for\ information\ only.\ Please\ refer\ to\ the\ current\ version\ of\ the\ original\ standards\ for\ dimensional\ information.$

- 1) Sealing ID Nom Bore 26 to 34 tolerances +/- 0.8mm and Nom Bore 36 to 60 +/- 1.5mm
- 2) Sealing OD Nom Bore 26 to 60 tolerances +/- 1.5mm
- 3) Centering Ring OD tolerances =/- 0.8mm
- 4) There is no Class 900 Flange in NPS 50 and above.

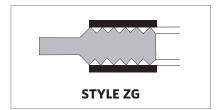
FLEXPRO™ KAMMPROFILES

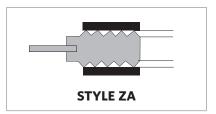
ASME B16.20 Series B

NOMIN <i>A</i>	AL BORE	SEALING INNER DIAMETER	SEALING OUTER DIAMETER	CEN	ITERING R	ING OUTE	R DIAME	TER								
INCHES	мм	150	150	300	300	400	400	600	600	900	900	150	300	400	600	900
26	650	673.1	698.5	673.1	711.2	666.8	698.5	663.7	714.5	692.2	749.3	725.4	771.7	746.3	765.3	838.2
28	700	723.9	749.3	723.9	762.0	714.5	749.3	704.9	755.7	743.0	800.1	776.2	825.5	800.1	819.2	901.7
30	750	774.7	800.1	774.7	812.8	765.3	806.5	778.0	828.8	806.5	857.3	827.0	886.0	857.3	879.6	958.9
32	800	825.5	850.9	825.5	863.6	812.8	860.6	831.9	882.7	863.6	914.4	881.1	939.8	911.4	933.5	1016.0
34	850	876.3	908.1	876.3	914.4	866.9	911.4	889.0	939.8	920.8	971.6	935.0	993.9	962.2	997.0	1073.2
36	900	927.1	958.9	927.1	965.2	917.7	965.2	939.8	990.6	946.2	997.0	987.6	1047.8	1022.4	1047.8	1124.0
38	950	974.9	1009.7	1009.7	1047.8	971.6	1022.4	990.6	1041.4	1035.1	1085.9	1044.7	1098.6	1073.2	1104.9	1200.2
40	1000	1022.4	1063.8	1060.5	1098.6	1025.7	1076.5	1047.8	1098.6	1098.6	1149.4	1095.5	1149.4	1127.3	1155.7	1251.0
42	1050	1079.5	1114.6	1111.3	1149.4	1076.5	1127.3	1104.9	1155.7	1149.4	1200.2	1146.3	1200.2	1178.1	1219.2	1301.8
44	1100	1124.0	1165.4	1162.1	1200.2	1130.3	1181.1	1162.1	1212.9	1206.5	1257.3	1197.1	1251.0	1231.9	1270.0	1368.6
46	1150	1181.1	1224.0	1216.2	1254.3	1193.8	1244.6	1212.9	1263.7	1270.0	1320.8	1255.8	1317.8	1289.1	1327.2	1435.1
48	1200	1231.9	1270.0	1263.7	1311.4	1244.6	1295.4	1270.0	1320.8	1320.8	1371.6	1306.6	1368.6	1346.2	1390.7	1485.9
50	1250	1282.7	1325.6	1317.8	1355.9	1295.4	1346.2	1320.8	1371.6	Note (4)	Note (4)	1357.4	1419.4	1403.4	1447.8	Note (4)
52	1300	1333.5	1376.4	1368.6	1406.7	1346.2	1397.0	1371.6	1422.4	Note (4)	Note (4)	1408.2	1470.2	1454.2	1498.6	Note (4)
54	1350	1384.3	1422.4	1403.4	1454.2	1403.4	1454.2	1428.8	1479.6	Note (4)	Note (4)	1463.8	1530.4	1517.7	1555.8	Note (4)
56	1400	1444.8	1478.0	1479.6	1524.0	1454.2	1505.0	1479.6	1530.4	Note (4)	Note (4)	1514.6	1593.9	1568.5	1612.9	Note (4)
58	1450	1500.6	1528.8	1535.2	1573.3	1505.0	1555.8	1536.7	1587.5	Note (4)	Note (4)	1579.6	1655.8	1619.3	1663.7	Note (4)
60	1500	1557.3	1586.0	1589.0	1630.4	1568.5	1619.3	1593.9	1644.7	Note (4)	Note (4)	1630.4	1706.6	1682.8	1733.6	Note (4)

GENERAL NOTES

Dimensions in mm. Tolerances in mm


Figures stated are for information only. Please refer to the current version of the original standards for dimensional information.


NOTES

- 1) Sealing ID Nom Bore 26 to 34 tolerances +/- 0.8mm and Nom Bore 36 to 60 +/- 1.5mm
- 2) Sealing OD Nom Bore 26 to 60 tolerances +/- 1.5mm
- 3) Centering Ring OD tolerances +/- 0.8mm
- 4) There are no Class 900 flanges NPS 50" and above.

FLEXPRO™ KAMMPROFILES

EN 12560-6

NOMINAL	PIPE SIZE	SEALING	ELEMENT			CENTERING	RING OUTER	R DIAMETER		
INCHES	мм	INNER DIAMETER	OUTER DIAMETER	150 Class	300 Class	400 Class	600 Class	900 Class	1500 Class	2500 Class
1/2	15	23.0	33.3	44.4	50.8	50.8	50.8	60.3	60.3	66.7
3/4	20	28.6	39.7	53.9	63.5	63.5	63.5	66.7	66.7	73.0
1	25	36.5	47.6	63.5	69.8	69.8	69.8	76.2	76.2	82.5
11/4	32	44.4	60.3	73.0	79.4	79.4	79.4	85.7	85.7	101.6
11/2	40	52.4	69.8	82.5	92.1	92.1	92.1	95.2	95.2	114.3
2	50	69.8	88.9	101.6	108.0	108.0	108.0	139.7	139.7	142.8
21/2	65	82.5	101.6	120.6	127.0	127.0	127.0	161.9	161.9	165.1
3	80	98.4	123.8	133.4	146.1	146.1	146.1	165.1	171.5	193.7
31/2	90	111.1	136.5	158.8	161.9	158.7	158.7	-	-	-
4	100	123.8	154.0	171.5	177.8	174.6	190.5	203.2	206.4	231.7
5	125	150.8	182.6	193.7	212.7	209.5	238.1	244.5	250.8	276.2
6	150	177.8	212.7	219.1	247.7	244.5	263.5	285.8	279.4	314.3
8	200	228.6	266.7	276.2	304.8	301.6	317.5	355.6	349.3	384.1
10	250	282.6	320.7	336.5	358.8	355.6	396.9	431.8	431.8	473.0
12	300	339.7	377.8	406.4	419.1	415.9	454.0	495.3	517.5	546.1
14	350	371.5	409.6	447.7	482.6	479.4	488.9	517.5	574.7	-
16	400	422.3	466.7	511.2	536.6	533.4	561.9	571.5	638.1	-
18	450	479.4	530.2	546.1	593.7	590.5	609.6	635.0	701.7	-
20	500	530.2	581.0	603.2	650.9	644.5	679.5	695.3	752.4	-
22	550	581.0	631.8	657.2	701.7	698.5	730.3	-	-	-
24	600	631.8	682.6	714.4	771.5	765.2	787.4	835.0	898.5	-

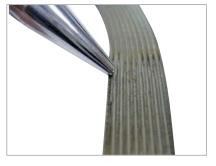
GENERAL NOTES

Diameter tolerances:

Up to 1000mm OD +0/-0.4mm

Above 1000mm OD +0/-0.1mm

ID +1.0mm/-0


HYBRID AND SPECIAL DESIGNS

STANDARD FLEXPRO™ DESIGN PROFILE

Whenever possible Flexitallic recommend the use of a single piece construction serrated core (no welds), however, in many instances the size of gasket required is larger than the standard commercially available sheet material. In these instances, strip material is ring rolled and welded together using the minimum number of welds possible. Flexitallic ensure that the ends of the ring-rolled metal strip are carefully aligned, both vertically and horizontally, before full penetration fusion welding. This process eliminates any potential leakage paths in the weld location and minimises the heat affected zone.

After careful dressing of the weld concentric serrations are machined on the ring. This eliminates any potential high and/or low spots in the weld area.

Lower cost manufacturing routes involving ring-rolling and welding of pre-serrated metal strip, can result in the integrity of the gasket being compromised (leakage paths at weld locations).

Flexitallic processes eliminate potential leakage paths at weld location.

SERRATION PROFILES

Flexitallic can manufacture Flexpro™ gaskets with various serration profiles. The standard Flexitallic shallow profile has been designed to effect a high integrity seal when covered with any one of a range of facing materials and thicknesses. Other serration profiles as defined by different international or customer standards are available.

SPECIAL SHAPES

Flexitallic have designed and built a number of serration profiling machine tools that provide the capability of machining complex shapes while maintaining the concentric serrations on the sealing faces. These shapes can include oval, obround, rectangular and irregular shapes which are often required for manholes, special access door seals and fin fan cooler box covers. The Flexpro[™] core can be supplied in a wide range of thicknesses from 2.0mm upwards.

The FlexproTM design is especially suited for use in connections with narrow radial widths commonly found in fin fan plug gaskets and other applications where space is limited such as floating head and valve body and bonnet locations.

In addition to complex shapes, Flexitallic have successfully provided Flexpro™ kammprofile gaskets for use on misaligned flanged connections. These 'wedge' shaped gasket are machined to meet a specific misalignment angle.

The Flexpro[™] kammprofile section is commonly supplied in pass bar form and incorporated into the tube side of multi-pass heat exchanger gaskets.

HYBRID DESIGNS

For difficult sealing applications, hybrid technology can be applied to provide a high integrity assembly. Flexitallic can provide sealing solutions where Flexpro™sealing technology is combined with other gasket styles such as spiral wound and Change gaskets. The metal core of the Flexpro™ section of the gasket provides additional seal integrity, compression limitation and rigidity.

For difficult and special applications please contact the Flexitallic Applications Engineering team.

RE-FACING FLEXPRO™ GASKETS

Typically a gasket is used only once, however, when using large diameter or expensive core material it may be cost effective to re-face and re-use the Flexpro™ gasket. This service can provided by Flexitallic or undertaken on site by suitable personnel following appropriate training.

Special shapes.

SUPERIOR PERFORMANCE BY DESIGN

	WHY FLEXPRO™ KAMMPROFILE GASKETS?
Proven Design	Many years of proven success in sealing difficult applications.
Superior Sealing Tightness and Safety	Correct material selection provides longer service life, no need to 'hot torque', reduced emissions and reduced maintenance requirements.
Low Seating Stress	Ideal for light flanges with limited bolt load, as well as highly loaded flanges.
Different Shapes	Flexitallic production methods provide the capability of manufacturing a wide range of sizes in circular and non-circular shapes to suit a wide range of flange types.
Wide Range	Flexpro $^{\text{TM}}$ gasket metal cores and soft facings are selected from a wide range of Materials of materials to suit specific applications.
Wide Pressure Range	Suitable for use on all standard flange pressure classes and norms.
Wide Temperature Range	Suitable for use in cryogenic service up to 1000°C.
Conformable Sealing Surfaces	The soft conformable sealing faces of the Flexpro TM gaskets, are more tolerant to smooth and or damaged flange sealing faces.
Reproducible	The Flexitallic manufacturing processes provide a highly repeatable process Construction from one manufacturing batch to another.
Easy to Handle and Install	The rigid and stable core of the Flexpro™ gasket facilitates easy handling and installation, with reduced risk of damage to the gasket.
Fire Safe	Material specific, Flexpro™ gaskets are API-6FB Fire Safe.
Re-usable	Flexpro™gaskets can be re-faced and re-used.
Replaces Double Jacketed Gaskets	Flexpro [™] gaskets are a direct replacement for double jacketed gaskets. Note: Where Nubbins (stress raisers) are present, please check with Flexitallic Applications Engineering Team.
Space Limitations	Flexpro™ gaskets can be manufactured with narrow seal land widths.
Cost Effective	Longer service life, less maintenance, reduced emissions.

UNITED KINGDOM Flexitallic UK Ltd.

Scandinavia Mill Hunsworth Lane Cleckheaton West Yorkshire, BD19 4LN UK Tel. +44 1274 851273

www.flexitallic.com

Branches also in Aberdeen, Middlesbrough, Ellesmere Port and South West.

ITALY Flexitallic Italy Sr.I

Via Leonardo Da Vinci 6B 26020 Ticengo CR ITALY Tel. +39 0374 71006 Fax. +39 0374 71277

www.flexitallic.com

THAILAND Flexitallic Sealing Technology Co Ltd.

No. 7/456, Moo 6, Amata City Rayong Industrial Estate Mabyangporn Sub-district Pluak Daeng District Rayong Province THAILAND

Tel. +66 (0)33017561 ~ 3 Fax. +66 (0)33017564 www.flexitallic.com

FRANCE

www.siem.fr

Siem Supranite a Flexitallic Company 31-33 Rue de Mogador 75009 Paris FRANCE Tel. +33 (0)1 48 88 88 88 Fax. +33 (0)1 47 66 88 44

GERMANY Flexitallic GmbH

Halskestr. 4a 47877 Willich GERMANY Tel. +49 (0) 2154 95363-0 Fax. +49 (0) 2154 95363-29 www.flexitallic.com

BENELUX Flexitallic Benelux BVBA

Smallandlaan 21 2660 Hoboken BELGIUM Tel. + 32 3 369 19 68 www.flexitallic.com

UNITED ARAB EMIRATES Flexitallic LLC

PO Box No. 6591-Al Jazeera Plot 108, Road E Al Hamra Industrial Area Ras Al Khaimah UNITED ARAB EMIRATES Tel. +971 7 202 5300 www.flexitallic.com

Branch also in Abu Dhabi.

CHINA Flexitallic Gasket Technology (Suzhou) Co., Ltd

Building A, 1868 Guangming Rd Technological Development Zone WuJiang Economic 215200 CHINA

Tel. +86 512 6303 2839 Fax. +86 512 6303 2879 www.flexitallic.com

SINGAPORE

Flexitallic Ltd. *Singapore Branch*

Level 42 Suntec Tower Three 8 Temasek Boulevard SINGAPORE 038988

Tel. +65 68663638 www.flexitallic.com

AUSTRALIA Flexitallic Australia Pty Ltd.

13-15 Vinnicombe Drive Canning Vale Perth, WA 6112 AUSTRALIA Tel. +61 (0)8 9455 2155 www.flexitallic.au

Branch also in Melbourne, Victoria.

UNITED STATES Flexitallic US LLC

6915 Highway 225 Deer Park Texas 77536 USA Tel. +1 281 604 2400 Fax. +1 281 604 2415 www.flexitallic.com

CANADA Flexitallic Canada Ltd.

4340 - 78 Avenue Edmonton Alberta, T6B 3J5 CANADA Tel. +780 466 5050 Fax. +780 465 1177 www.flexitallic.com

About The Flexitallic Group

The Flexitallic Group is a global leader in specialised sealing solutions and products serving the oil and gas, power generation, chemical and petrochemical industries in emerging and developed markets. Focused on the upstream, downstream and power generation sectors, it has operations in France, the United States, Canada, Mexico, the United Kingdom, Germany, Italy, Belgium, the United Arab Emirates, Thailand, Australia and China plus a network of worldwide licensing partners and distributors.